

Iron-enriched Aspergillus oryzae as an alternative to iron sulfate to limit iron accumulation, growth, and motility of the enteric pathogen S. Typhimurium

Manju B. Reddy,¹ Katelyn M. Miller,² David Quashie, Jr.,^{2*} Frank J. Velez,² Jamel Ali,^{2*} Prashant Singh,² Stephen R. Hennigar² ¹Department of Food Science and Human Nutrition, Iowa State University; ²Department of Nutrition and Integrative Physiology, Florida State University

Abstract

Excess unabsorbed iron in the gastrointestinal tract may select for enteric pathogens and increase the incidence and severity of infectious disease. Aspergillus oryzae (Ao) is a filamentous fungus that has the ability to accumulate and store large amounts of iron, and when used as a supplement or fortificant, has similar absorption to ferrous sulfate in humans. The objective of this study was to determine the effect of iron-enriched Ao (Ao iron) compared to ferrous sulfate (FeSO₄) on iron accumulation, growth and motility of the Gram-negative enteric pathogen, S. Typhimurium. In the current study, S. Typhimurium was cultured in media containing no added iron or 1 µM elemental iron as either Ao iron or FeSO₄. Results showed that S. Typhimurium cultured with FeSO₄ accumulated more iron than those cultured with Ao iron. Genes regulated by the iron-activated transcriptional repressor, Fur, did not differ between control and Ao iron, but decreased in S. Typhimurium cultured with FeSO₄ compared to both groups. Growth of S. Typhimurium was greater when cultured with FeSO₄ compared to Ao iron and control. S. Typhimurium swam faster, had greater acceleration, and traveled further when cultured with FeSO₄ compared to Ao iron and control; swim speed, acceleration, and distance traveled did not differ between Ao iron and control. These results provide evidence that Ao iron reduces the virulence of a common enteric pathogens and suggest that iron-enriched Ao may be a suitable iron supplement to improve iron delivery in areas with a high infection burden.

Introduction

- The WHO recommends daily iron supplementation for infants and children and for women of reproductive age. Safety concerns have been raised with these recommendations in areas that have a high infection burden [1].
- Based on the low cost and high bioavailability and efficacy, iron sulfate (FeSO₄) is typically the first choice for supplementation and fortification.
- The recommended dose of iron is set high to deliver adequate absorbed iron due to low rates of dietary iron absorption (<10%) [2]. Thus, most dietary iron is not absorbed and travels to the colon.
- Unabsorbed iron in the colon may select for enteric pathogens at the expense of beneficial commensal bacteria and increase infection risk [2].
- Aspergillus oryzae (Ao) is a filamentous fungus that accumulates and stores large amounts of iron. Recent research has focused on Ao as a vehicle for iron supplementation and fortification.
- Ao grown in FeSO₄ has been shown to have similar absorption to FeSO₄ in women of reproductive age with low iron stores [3].

Objective

The objective of this study was to determine the effect of iron-enriched Ao (Ao iron) compared to $FeSO_4$ on iron accumulation, growth and motility of the Gram-negative enteric pathogen, S. Typhimurium. S. Typhimurium is a motile facultative pathogen whose greatest burden is in regions where children are most effected by environmental enteric dysfunction [4].

Methods

- S. enterica subsp. enterica serovar Typhimurium ATCC® 14028™ were cultured in Iscove's Modified Dulbecco Medium (IMDM) containing:
 - No iron (Control)
 - = 1 μ M elemental iron as FeSO₄ (Sigma-Aldrich)
 - \sim 1 µM elemental iron as FeSO₄-enriched Ao (Cura Global Health Inc.)
- Unless noted otherwise, data were analyzed using a one-way ANOVA and different letters indicate a significant post-hoc comparison (P<0.05).
- Data are means \pm SD. Experiments were repeated at least twice.

Figure 1. Iron accumulation is reduced in S. Typhimurium cultured with Ao iron compared to FeSO₄. S. Typhimurium were cultured for 12 h and the iron concentration of digested bacteria was determined by flame AAS; n=3/treatment.

Figure 2. Genes regulated by the iron-activated transcriptional repressor, Fur, are upregulated in S. Typhimurium cultured with Ao iron compared to FeSO₄. S. Typhimurium were cultured for 12 h and expression of A) tonB-R, B) tonB-TP, C) feoB, D) fimA, and E) invA were determined by RT-qPCR. Data are normalized to 16S and fold change was calculated using the $\Delta\Delta Cq$ method; n=5/treatment.

Figure 3. Ao iron restricts the growth of S. Typhimurium compared to **FeSO**₄. Growth of S. Typhimurium was determined by measuring OD_{600} every 15 min for 12 h on a plate reader. Data were analyzed using a twoway ANOVA. Asterisks (*) indicate a significant post-hoc comparison (P<0.05): *P<0.05 FeSO₄ compared to Ao iron; **P<0.05 FeSO₄ compared to control; ***P<0.05 Ao iron compared to control; n=3/treatment/timepoint.

References

- Georgieff MK et al. The benefits and risks of iron supplementation in pregnancy and childhood. *Annu Rev Nutr* 2019;39:121–46.
- 2. Paganini D, Zimmermann MB. The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: a review. *Am J Clin Nutr* 2017;106:1688S-
- Reddy MB et al. Iron absorption from iron-enriched *Aspergillus oryzae* Is similar to ferrous sulfate in healthy female subjects. *Curr Dev Nutr* 2018;2:nzy004.
 Feasey NA et al. Invasive non-typhoidal Salmonella disease: an emerging and neglected
- tropical disease in Africa. Lancet 2012;379:2489-99.

Results

Figure 4. Ao iron restricts the motility of S. Typhimurium compared to $FeSO_4$. A) Velocity, B) acceleration, and C) distance traveled of S. Typhimurium cultured for 7 h. Phase contrast imaging was used to visualize bacterial motion, and recorded via high-speed camera. Videos were analyzed using 2D tracking algorithms using NIS-Elements AR Analysis software; n=5/treatment.

- negative enteric pathogen, S. Typhimurium.

infection burden.

Conclusions

Ao iron restricts iron accumulation and virulence of the common Gram-

These findings suggest that Ao iron may be an effective alternative to $FeSO_4$ to address iron deficiency in areas with a high infection burden. The nature of Ao iron after digestion, mechanism of Ao iron absorption, and whether Ao iron is a cost-effective strategy is required to build the adoption of Ao iron as a supplement or fortificant in areas with a high

*Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering.